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Soliton-breather reaction pathways

P. Maniadis and G. P. Tsironis
Department of Physics, University of Crete and Foundation for Research and TechAdkdgs (FORTH),
P.O. Box 2208, 71003 Heraklion, Crete, Greece

A. R. Bishop
Theory Division and Center for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

A. V. Zolotaryuk
Bogolyubov Institute for Theoretical Physics, 252 143 Kyiv, Ukraine
(Received 3 June 1999

We use a collective coordinate approach to investigate corpuscular properties of breathers in nonlinear
lattice systems. We calculate the breather internal energy and inertial mass and use them to analyze the reaction
pathways of breathers with kinks that are preformed in the lattice. We find that there is an effective kink-
breather intraction potential that, under some circumstances, is attractive and has a double well shape. Fur-
thermore, we find that in some cases the internal energy of a moving breather can be relased during the reaction
with the kink and subsequently transformed to kink translational energy. These breather properties seem to be
model independen{S1063-651X99)05411-2

PACS numbgs): 05.45.Yv, 63.20.Ry, 45.50.Tn, 45.9&

Extended nonlinear lattice systems have been under in- We consider the classical Hamiltonian in a standard di-
tense scrutiny recently regarding their dynamical, transpormensionless form:
and statistical propertiegl—15. Numerous analytical and
numerical studies have demonstrated that intrinsic localized 102 1
modes, or discrete breathers, forming spontaneously in non- H :; [2Un+ 2 .(Uns 1= Up)*+V(Up) ], @
linear lattices, play a very important role in these properties.
Discrete breathers are spatially localized, time periodic SOluwhereunzun(t) is the displacement of theth atom of the
tions of translationally invariant nonlinear lattices that arechain from its equilibrium position, an overdot stands for
formed due to the coexistence of nonlinearity with discretejfferentiation with respect to dimensionless titex is the
ness. Breather solutions exist also in several continuoustrength of the nearest-neighbor oscillator coupling, sl
models but they are not always stable. On the other hand, iin on-site potential normalized by'(0)=1.
discrete models, breathers are typically stable. One very ap- In this work we will be reporting results primarily for sine
pealing feature of breathers is related to their kinematic propand double-well nonlinearity on-site potentials. In order to
erties; they were shown to be mobile and thus contribute t@ddress the particlelike properties of discrete but relatively
energy transfer processes in the nonlinear lattice. Many lawide sine-Gordon breathers, we use the well known exact
tice systems, on the other hand, with on-site potentials thagontinuous breather solutiga8]. To find the center-of-mass
have more than one degenerate minimum, can also suppdtynamics of the breather solution, we introduce the dynami-
topological solitons or kinks that also play an important rolecal variablesXg(t),Xg(t), representing, respectively, the po-
in the dynamical properties of the system. Kinks are moresition and velocity of the breather center of mass. We use the
robust than breathers and require more formation energyapproach of Ref[16] and work in the continuous limitn(
They also have particlelike properties that have been studied x). Contrary to previous workl9—23, we introduce only
extensively over the last several decades. The aim, then, @he collective coordinate, namely, the position of the
the present article is to address both breather and kink sp&reather center. Therefore, on the basis of the standing
cies formed in an extended nonlinear system, focusing pribreather solution, we write the following approximatev-
marily on the particlelike properties of both. We will use the ing breather ansatz:
collective coordinate approach to analyze the dynamics of
independent kinks and breathers and further use it to address
the properties of their mutual interaction. The latter can be
considered in analogy with a chemical reaction since, in
many cases, the internal breather energy seems to be released X sec+sin
to the kink. Our findings demonstrate the complexity of the
breather-kink interaction and the occurrence of several reac-
tion pathways that lead to different products. The analyticahere 0< u< /2, andc,= \/x is the dimensionless charac-
and numerical results presented here form an attempt to uteristic velocity. It appears the critical width for the existence
derstand this complicated problem. of this (standing breather solution i& .= cy.

ug(x,t)=4 arctar{ tanu sin(cosut)

C%)(x—xB) ] @
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As with the breather solution, we also introduce the kink 0.0
solution with a set of collective coordinates, respectively,

Xk (t),Xk(t). The moving kink ansatz is

uk(x,t) =4 arctan exp= (x— Xg)/cq]. (3 . -20
(i
Upon substitution in the continuous system Hamiltonian, 5
summing these solutionsi & ug+ uy) and elimination of all 40 |

but the center-of-mass dynamical variables of the breather
and kink, we obtain the averaged effective breather-kink en-
ergy that, for small velocities, reads

-6.0 : . :
1 ) 1 _ -10.0 -5.0 0.0 5.0 10.0
E=Eg+ 5MeXa+ Ex+ M X +U(R), (4) R
. o ' ' FIG. 1. Kink-breather attractive potential as a function of the
with the effective interaction potential dimensionless kink-breather distange for breather frequencies
w,=0.1, 0.2, 0.5, and 0.9. In the regimg=< w/3 the potential has
x—R the form of a double well.

U(R)=—8tar?,uf dx sech
. o
in the small parameter=\1— 02, where is the breather

i H —3/2 A .
sin sin
% secﬁ( M x| 1+ tarf secﬁ( M x) , frequency. Substituting the expansion
Co Co 1
(5) up(t)=*+1+ Ee[AneiQt+ eDe?M+c.c]+€’Cpt - -
whereR=Xz— Xk . In these equations the expected station- ©)

ary breather and kink energies and masses are given by -y here the uppetlowen sign stands for oscillations in the

6) right (left) well of the double-well on-site potentiainto the
discrete equation of motion and equating coefficients at the
Ex=8cy, My=8lc,. (7) same powers of the parametgrone finds the equation

Eg=16¢cysinu, Mpg=(16/cy)cosu(tanu—pu),

For u— /2 we haveM g=2M , while in the other extreme ke 2(Ans1—2AnTAr_1) — AR F3ALC,
n—0 we haveMzg—0. 3 3

For the kink and breather collective coordinates we cal- IEAnDn— §Aﬁ=0 (10
culated also the field momentubhgiven by

B and the relation€,= ¥ 3A%/4 andD,= = A2/4. Using the
P= —f dxu,u,=MgXg+M X, (8)  solution in the continuum limit of these equations, one can
°° write the correspondingstanding breather solution:

where the overbar denotes the time-averaged quantity over

2c X
one breather period. Ug(x,t)y==1+ —Osech—cos(Qt)
These equations approximate the complicated problem of NEN A
a breather interacting with a sine-Gordon kink as a problem 2
. ; Co X 1
of two classical particles of mass&ég and My, respec- 1(_) sec —| 1— =cog2Qt) |, (11)
tively, with internal energie§g andEy interacting through A A 3

the complex potentidll (R), whereR is the relative distance where\ =cq/ € is the correlation length of oscillations and

between the particles. In Fig. 1 we plot the breather-kinl&he breather frequenc? is given by Q2=1—(cy/\)2 In

interaction potential for various breather frequencies. We Obfhe continuum imitas1.

serve that the potential has a double-well structure for . . L 4 .
smaller breather frequencies but switches to a single well at (?o_nS|der now theéan'gD.kmk motion in theg mc_)del W't.h
ufficiently small velocities and denote tl@ntikink posi-

higher frequencies. The double-well structure signifies thaf. - "
there is an equilibrium distance from the kink at which theEon by X(t). Then for sufficiently small velocities thian-

system of breather-kink can be at rest, or that the breathépkm.k solution of Eq.(1) in the continuum limit can ap-
can excecute bounded oscillations around this minimumproxmately be represented by

This result does not seem to be specific to the sine-Gordon U (X,t) = = tani (x— X )/2¢,], (12)
system. For instance, for the case ofp4 lattice with the

on-site potentiaV(u)=(1—u?)?/8, a similar approach can where the uppeflower) sign corresponds to the kirflanti-

be used, although the analytical calculations are considerabkink). We are interested in the breatiantikink interac-
more difficult, since thep* breather is not symmetricl7]. tion. Note that the ansatz for this interaction cannot be as-
To find, in the continuum approximation, a small-amplitudesumed in the additive form because of topological
breather solution to this model, we can also use the multiplearguments. Using Eqs(11) and (12), the additive form
scale asymptotic expansigfor details, see, e.g., Ref®4])  should be modified to



7620 BRIEF REPORTS PRE 60

4060 60
Lattice site Lattice site

0 10 20 35 6000 .
Lattice site FIG. 3. (a) Breather repulsion when placed close to the center of

the kink with zero initial velocity (o=1.0, w,=0.9844k
FIG. 2. Trapping of an initially static breather in the vicinity of =0.251).(b) Breather absorbion by the kink, while breather inter-

a ¢* kink. Parameters ar@?=2, w,=1.37819 and couplink  nal energy is transformed into phononsvjE 2, w,=1.3921,k

=0.301. =0.691).

of the potential energy of the system, we see that when the
X—Xg " Co|? HX_XB breather comes close to the kink, it sees a potential barrier
Sech— cogQt)+) 1- N See and it is forced to return.
The trapping of a breather in the vicinity of a kink is not
X— Xk the only possible breather-kink dynamical configuration. For
]tanhT, (13 an initially static breather-kink system, depending on the pa-
0 rameter regime and additional perturbations due to proximity

where the uppeflower) sign corresponds to the interaction 0 the discreteness regime, we may have a detrapped situa-

Ao

J3\

1
1- §cos(2£2t)

u(x,t)=

X

of a breather with a kinkantikink). tion. In Fig. 3 we present numerical simulations for the sine-
The total energy can be represented to lowest order in Gordon system with an initially static breather-kink configu-
by the same sum of Ed4), but with ration. When the breather is placed close to the kink, it is

2 o _
U(R)=(%) J mdxsecﬁﬂsecﬁi

_ N 2Cq
« Cot x—Rt x 1 R x 1
Yanh—)\ anhZTO Zsec Z_CO 3]

(14)

This effective potential has the form of a single well, cen-
tered atR=0. Here in the lowest orders @&f, the breather SO ] 1,39‘0 o T30 0770 Lac,;o AT E
and kink energies and masses are given by fice sie ficeste

Eg=4c3/3\, Mpg=4c3/o3, (15)

Ex=2cy/3, Mg=2/3c,. (16

Except for the well known kink relatio, = MKCS, we
note a similar breather relation with low amplitudes. Indeed, v
for small amplitudes the correlation length of the SG
breather A =cy/sinu=cy/n. Using the last relation, one
finds for both models the following equatioBz=3M g\ 2.

There is clear numerical evidence presented in Fig. 2 T
showing the breather trapped in the vicinity of the kink and Lattice site
?gciﬁ/lglggt:nmtﬂ: ()Tsﬁgéae:uomr}rs“:]?%g?‘ tt?ee SZ(IQnr:rTi]nuEigOflai?] (;f]e FIG. 4. (a) The breather is absorbed by the kink while its inter-

. ’ ' . hal energy is transformed into kinetic energy for the latter. We also
Sine-Gordon mOde|3 but only for Very. small freq,uenC'eS’see that some phonons are excited. The values of the parameters are
where the breather is unstable. Numerical evaluation of the _ ;" ' "_ 5 ga44 couplingx=0.649, perturbation strength
expression of Eq(14) for the same parameters as in Fig. 2 _ 1 16102 ! '

> i ) ) =0.161043[13]. (b) In this case we increase the perturbation
results in a single attractive well centered aroi¥0. This  gyrength and see that the breather is reflected from the kink. The

indicates that for the case of the asymmetit breather, parameters are the same as in Fi@) 4xcept that=0.161172.(c)
additional collective coordinates are necesary for expliCiin this figure we see that the breather is absorbed by the kink, and
prediction of the double-well feature of the kink-breather at-the internal energy of the kink is transformed into outgoing
tractive potential that is seen numerically in Fig. 2. By plot- phonons. Parameters aig=2, w,=1.3921, couplingk=0.691,

ting the average over one period of the breather oscillationandl =0.166813.
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repelled[Fig. 3(@], while when placed further it is attracted From the previous analysis we observe that the breather-
to the kink. In the last case, shown in the figure, we note thakink interaction is a complex one, leading to a variety of
the breather is actually destroyed with a subsequent generautcomes. From the energy transfer point of view, a breather
tion of linearized modes. is an efficient agent that acts as a particle with its internal
Let us finally consider the case of moving breathers im-tructure characterized by a given amount of internal energy.
pinging on the kink. To generate moving breathers we usg is also characterized by certain reactivity features that en-
the method of Refl13]. We recall that the moving breather, gpje it to transfer and deposit this energy in lattice regions
in addition to an inertial mass, also carries internal energyyity kinks. The kink-breather reaction is complex, character-
Eg . This energy can, in principle, be deposited in any lattic&;eq py a trapping potential that depends on the breather
location whenever the breather “reacts” with another Spe'frequency and the breather initial momentum and possibly
the relative phase. For breathers with low frequencies, we
find that a length scale is created within which a breather-
ink bound state can be formed. Moving breathers, on the
ther hand, can react with kinks transforming all their energy
into kink kinetic energy, or having an elastic collision with
e kink. Finally, complete breather annihilation is also pos-

Fig. 4(a), where a kinetic breather reacts with the kink, re-
leasing all internal and kinetic energy to the kink, which then
begins moving. In this case, breather energy is transforme
into kink kinetic energy. In Fig. @), on the other hand, we
observe a breather-kink elastic collision, where the breath
is simply reflected from the kink with very little distortion. _. : . : .

Finally, in Fig. 4c) we observe a third kink-breather reaction 22|§e;’vlth subsequent generation of linearized  extended
pathway through which the breather energy is released to the '

vicinity of the kink with subsequent generation of linearized Partial support by INTAS 96-0158 is acknowledged. One
modes. In this case, the breather is destroyed without passimg us (A.Z.) thanks NATO for a travel grant. Work at Los
its internal energy to the kink in the form of kinetic energy. Alamos was sponsored by the U.S. DOE.
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