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Soliton-breather reaction pathways
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We use a collective coordinate approach to investigate corpuscular properties of breathers in nonlinear
lattice systems. We calculate the breather internal energy and inertial mass and use them to analyze the reaction
pathways of breathers with kinks that are preformed in the lattice. We find that there is an effective kink-
breather intraction potential that, under some circumstances, is attractive and has a double well shape. Fur-
thermore, we find that in some cases the internal energy of a moving breather can be relased during the reaction
with the kink and subsequently transformed to kink translational energy. These breather properties seem to be
model independent.@S1063-651X~99!05411-2#

PACS number~s!: 05.45.Yv, 63.20.Ry, 45.50.Tn, 45.90.1t
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Extended nonlinear lattice systems have been under
tense scrutiny recently regarding their dynamical, transp
and statistical properties@1–15#. Numerous analytical and
numerical studies have demonstrated that intrinsic locali
modes, or discrete breathers, forming spontaneously in n
linear lattices, play a very important role in these propert
Discrete breathers are spatially localized, time periodic so
tions of translationally invariant nonlinear lattices that a
formed due to the coexistence of nonlinearity with discre
ness. Breather solutions exist also in several continu
models but they are not always stable. On the other hand
discrete models, breathers are typically stable. One very
pealing feature of breathers is related to their kinematic pr
erties; they were shown to be mobile and thus contribute
energy transfer processes in the nonlinear lattice. Many
tice systems, on the other hand, with on-site potentials
have more than one degenerate minimum, can also sup
topological solitons or kinks that also play an important ro
in the dynamical properties of the system. Kinks are m
robust than breathers and require more formation ene
They also have particlelike properties that have been stu
extensively over the last several decades. The aim, then
the present article is to address both breather and kink
cies formed in an extended nonlinear system, focusing
marily on the particlelike properties of both. We will use th
collective coordinate approach to analyze the dynamics
independent kinks and breathers and further use it to add
the properties of their mutual interaction. The latter can
considered in analogy with a chemical reaction since,
many cases, the internal breather energy seems to be rele
to the kink. Our findings demonstrate the complexity of t
breather-kink interaction and the occurrence of several re
tion pathways that lead to different products. The analyti
and numerical results presented here form an attempt to
derstand this complicated problem.
PRE 601063-651X/99/60~6!/7618~4!/$15.00
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We consider the classical Hamiltonian in a standard
mensionless form:

H5(
n

@ 1
2 u̇n

21 1
2 k~un112un!21V~un!#, ~1!

whereun5un(t) is the displacement of thenth atom of the
chain from its equilibrium position, an overdot stands f
differentiation with respect to dimensionless timet, k is the
strength of the nearest-neighbor oscillator coupling, andV is
an on-site potential normalized byV9(0)51.

In this work we will be reporting results primarily for sin
and double-well nonlinearity on-site potentials. In order
address the particlelike properties of discrete but relativ
wide sine-Gordon breathers, we use the well known ex
continuous breather solution@18#. To find the center-of-mass
dynamics of the breather solution, we introduce the dyna
cal variablesXB(t),ẊB(t), representing, respectively, the po
sition and velocity of the breather center of mass. We use
approach of Ref.@16# and work in the continuous limit (n
5x). Contrary to previous work@19–23#, we introduce only
one collective coordinate, namely, the position of th
breather center. Therefore, on the basis of the stand
breather solution, we write the following approximatemov-
ing breather ansatz:

uB~x,t !54 arctanH tanm sin~cosmt !

3sechFsinS m

c0
D ~x2XB!G J , ~2!

where 0,m,p/2, andc0[Ak is the dimensionless charac
teristic velocity. It appears the critical width for the existen
of this ~standing! breather solution islc5c0.
7618 © 1999 The American Physical Society
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As with the breather solution, we also introduce the ki
solution with a set of collective coordinates, respective
XK(t),ẊK(t). The moving kink ansatz is

uK~x,t !54 arctan exp@6~x2XK!/c0#. ~3!

Upon substitution in the continuous system Hamiltonia
summing these solutions (u5uB1uK) and elimination of all
but the center-of-mass dynamical variables of the brea
and kink, we obtain the averaged effective breather-kink
ergy that, for small velocities, reads

E5EB1
1

2
MBẊB

21EK1
1

2
MKẊK

2 1U~R!, ~4!

with the effective interaction potential

U~R!528 tan2mE
2`

`

dx sech2
x2R

c0

3sech2S sinm

c0
xD F11tan2m sech2S sinm

c0
xD G23/2

,

~5!

whereR5XB2XK . In these equations the expected statio
ary breather and kink energies and masses are given by

EB516c0 sinm, MB5~16/c0!cosm~ tanm2m!, ~6!

EK58c0 , MK58/c0 . ~7!

For m→p/2 we haveMB52MK , while in the other extreme
m→0 we haveMB→0.

For the kink and breather collective coordinates we c
culated also the field momentumP given by

P52E
2`

`

dxutux5MBẊB1MKẊK , ~8!

where the overbar denotes the time-averaged quantity
one breather period.

These equations approximate the complicated problem
a breather interacting with a sine-Gordon kink as a prob
of two classical particles of massesMB and MK , respec-
tively, with internal energiesEB andEK interacting through
the complex potentialU(R), whereR is the relative distance
between the particles. In Fig. 1 we plot the breather-k
interaction potential for various breather frequencies. We
serve that the potential has a double-well structure
smaller breather frequencies but switches to a single we
higher frequencies. The double-well structure signifies t
there is an equilibrium distance from the kink at which t
system of breather-kink can be at rest, or that the brea
can excecute bounded oscillations around this minimu
This result does not seem to be specific to the sine-Gor
system. For instance, for the case of af4 lattice with the
on-site potentialV(u)5(12u2)2/8, a similar approach can
be used, although the analytical calculations are consider
more difficult, since thef4 breather is not symmetric@17#.
To find, in the continuum approximation, a small-amplitu
breather solution to this model, we can also use the multi
scale asymptotic expansion~for details, see, e.g., Refs.@24#!
,
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in the small parametere5A12V2, whereV is the breather
frequency. Substituting the expansion

un~ t !5611
1

2
e@AneiVt1eDne2iVt1c.c.#1e2Cn1•••

~9!

@where the upper~lower! sign stands for oscillations in th
right ~left! well of the double-well on-site potential# into the
discrete equation of motion and equating coefficients at
same powers of the parametere, one finds the equation

ke22~An1122An1An21!2An73AnCn

7
3

2
AnDn2

3

8
An

350 ~10!

and the relationsCn573An
2/4 andDn56An

2/4. Using the
solution in the continuum limit of these equations, one c
write the corresponding~standing! breather solution:

uB~x,t !5611
2c0

A3l
sech

x

l
cos~Vt !

7S c0

l D 2

sech2
x

lF12
1

3
cos~2Vt !G , ~11!

wherel5c0 /e is the correlation length of oscillations an
the breather frequencyV is given byV2512(c0 /l)2. In
the continuum limit,l@1.

Consider now the~anti!kink motion in thef4 model with
sufficiently small velocities and denote the~anti!kink posi-
tion by XK(t). Then for sufficiently small velocities the~an-
ti!kink solution of Eq.~1! in the continuum limit can ap-
proximately be represented by

uK~x,t !56tanh@~x2XK!/2c0#, ~12!

where the upper~lower! sign corresponds to the kink~anti-
kink!. We are interested in the breather-~anti!kink interac-
tion. Note that the ansatz for this interaction cannot be
sumed in the additive form because of topologica
arguments. Using Eqs.~11! and ~12!, the additive form
should be modified to

FIG. 1. Kink-breather attractive potential as a function of t
dimensionless kink-breather distanceR, for breather frequencies
vb50.1, 0.2, 0.5, and 0.9. In the regimevb<v0/3 the potential has
the form of a double well.
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u~x,t !5
2c0

A3l
sech

x2XB

l
cos~Vt !6H 12S c0

l D 2

sech2
x2XB

l

3F12
1

3
cos~2Vt !G J tanh

x2XK

2c0
, ~13!

where the upper~lower! sign corresponds to the interactio
of a breather with a kink~antikink!.

The total energy can be represented to lowest order il
by the same sum of Eq.~4!, but with

U~R!5S c0

l D 2E
2`

`

dx sech2
x2R

l
sech2

x

2c0

3S c0

l
tanh

x2R

l
tanh

x

2c0
2

1

4
sech2

x

2c0
2

1

2D .

~14!

This effective potential has the form of a single well, ce
tered atR50. Here in the lowest orders ofe, the breather
and kink energies and masses are given by

EB54c0
2/3l, MB54c0

2/9l3, ~15!

EK52c0/3, MK52/3c0 . ~16!

Except for the well known kink relationEK5MKc0
2, we

note a similar breather relation with low amplitudes. Inde
for small amplitudes the correlation length of the S
breather l5c0 /sinm.c0 /m. Using the last relation, one
finds for both models the following equation:EB53MBl2.

There is clear numerical evidence presented in Fig
showing the breather trapped in the vicinity of the kink a
executing small oscillations around the minimum of an
fective potential. These minima can be seen in Fig. 1 in
Sine-Gordon model, but only for very small frequencie
where the breather is unstable. Numerical evaluation of
expression of Eq.~14! for the same parameters as in Fig.
results in a single attractive well centered aroundR50. This
indicates that for the case of the asymmetricf4 breather,
additional collective coordinates are necesary for expl
prediction of the double-well feature of the kink-breather
tractive potential that is seen numerically in Fig. 2. By plo
ting the average over one period of the breather oscillat

FIG. 2. Trapping of an initially static breather in the vicinity o
a f4 kink. Parameters arev0

252, vb51.37819 and couplingk
50.301.
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of the potential energy of the system, we see that when
breather comes close to the kink, it sees a potential ba
and it is forced to return.

The trapping of a breather in the vicinity of a kink is n
the only possible breather-kink dynamical configuration. F
an initially static breather-kink system, depending on the
rameter regime and additional perturbations due to proxim
to the discreteness regime, we may have a detrapped s
tion. In Fig. 3 we present numerical simulations for the sin
Gordon system with an initially static breather-kink config
ration. When the breather is placed close to the kink, it

FIG. 3. ~a! Breather repulsion when placed close to the cente
the kink with zero initial velocity (v051.0, vb50.9844,k
50.251). ~b! Breather absorbion by the kink, while breather inte
nal energy is transformed into phonons. (v0

252, vb51.3921,k
50.691).

FIG. 4. ~a! The breather is absorbed by the kink while its inte
nal energy is transformed into kinetic energy for the latter. We a
see that some phonons are excited. The values of the paramete
v051, vb50.9844, couplingk50.649, perturbation strengthl
50.161043 @13#. ~b! In this case we increase the perturbati
strength and see that the breather is reflected from the kink.
parameters are the same as in Fig. 4~a! except thatl 50.161172.~c!
In this figure we see that the breather is absorbed by the kink,
the internal energy of the kink is transformed into outgoi
phonons. Parameters arev0

252, vb51.3921, couplingk50.691,
and l 50.166813.
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repelled@Fig. 3~a!#, while when placed further it is attracte
to the kink. In the last case, shown in the figure, we note t
the breather is actually destroyed with a subsequent gen
tion of linearized modes.

Let us finally consider the case of moving breathers
pinging on the kink. To generate moving breathers we
the method of Ref.@13#. We recall that the moving breathe
in addition to an inertial mass, also carries internal ene
EB . This energy can, in principle, be deposited in any latt
location whenever the breather ‘‘reacts’’ with another sp
cies, such as, for instance, a kink. This situation is see
Fig. 4~a!, where a kinetic breather reacts with the kink, r
leasing all internal and kinetic energy to the kink, which th
begins moving. In this case, breather energy is transform
into kink kinetic energy. In Fig. 4~b!, on the other hand, we
observe a breather-kink elastic collision, where the brea
is simply reflected from the kink with very little distortion
Finally, in Fig. 4~c! we observe a third kink-breather reactio
pathway through which the breather energy is released to
vicinity of the kink with subsequent generation of lineariz
modes. In this case, the breather is destroyed without pas
its internal energy to the kink in the form of kinetic energ
ie
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From the previous analysis we observe that the breat
kink interaction is a complex one, leading to a variety
outcomes. From the energy transfer point of view, a brea
is an efficient agent that acts as a particle with its inter
structure characterized by a given amount of internal ene
It is also characterized by certain reactivity features that
able it to transfer and deposit this energy in lattice regio
with kinks. The kink-breather reaction is complex, charact
ized by a trapping potential that depends on the brea
frequency and the breather initial momentum and poss
the relative phase. For breathers with low frequencies,
find that a length scale is created within which a breath
kink bound state can be formed. Moving breathers, on
other hand, can react with kinks transforming all their ene
into kink kinetic energy, or having an elastic collision wit
the kink. Finally, complete breather annihilation is also po
sible with subsequent generation of linearized exten
modes.

Partial support by INTAS 96-0158 is acknowledged. O
of us ~A.Z.! thanks NATO for a travel grant. Work at Lo
Alamos was sponsored by the U.S. DOE.
N.

a-

V.
@1# S. Flach and C. R. Willis, Phys. Rep.295, 182 ~1998!.
@2# D. Hennig and G. P. Tsironis, Phys. Rep.307, 333 ~1999!.
@3# D. K. Campbell and M. Peyrard, Physica D18, 47 ~1986!.
@4# A. J. Sievers and S. Takeno, Phys. Rev. Lett.61, 970 ~1988!.
@5# T. Dauxois and M. Peyrard, Phys. Rev. Lett.70, 3935~1993!.
@6# S. Aubry, Physica D71, 196 ~1994!.
@7# R. S. MacKay and S. Aubry, Nonlinearity7, 1623~1994!.
@8# D. Hennig, K. O. Rasmussen, G. P. Tsironis, and H. Gabr

Phys. Rev. E52, 4628~1995!.
@9# D. Cai, A. R. Bishop, and N. Gronbech-Jensen, Phys. Rev

52, 5784~1995!; 53, 4131~1996!; 56, 7246~1997!.
@10# S. Takeno and M. Peyrard, Physica D92, 140 ~1996!.
@11# S. Aubry, Physica D103, 201 ~1996!.
@12# J. L. Marin and S. Aubry, Nonlinearity9, 1501~1994!.
@13# Ding Chen, S. Aubry, and G. P. Tsironis, Phys. Rev. Lett.77,

4776 ~1996!.
@14# G. P. Tsironis and S. Aubry, Phys. Rev. Lett.77, 5225~1996!.
@15# D. W. Brown, L. Bernstein, and K. Lindenberg, Phys. Rev.

54, 3352~1996!.
l,

E

@16# G. Kalosakas, A. V. Zolotaryuk, G. P. Tsironis, and E.
Economou, Phys. Rev. E56, 1088~1997!.

@17# A. R. Bishop, P. Maniadis, G. P. Tsironis, and A. V. Zolot
ryuk ~unpublished!.

@18# See, e.g., L. D. Faddeev and L. A. Takhtajan,Hamiltonian
Methods in the Theory of Solitons~Springer-Verlag, Berlin,
1987!.

@19# B. A. Malomed, Physica D15, 385 ~1985!; 27, 113 ~1987!.
@20# Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys.61, 763

~1989!.
@21# Z. Fei ~unpublished!.
@22# E. Mann, J. Phys. A30, 1227~1997!.
@23# St. Pnevmatikos, Yu. S. Kivshar, M. J. Velgakis, and A.

Zolotaryuk, Phys. Lett. A173, 43 ~1993!.
@24# A. M. Kosevich and A. S. Kovalev, Z. E´ksp. Theor. Fiz.67,

1793~1974! @Sov. Phys. JETP40, 891~1975!; T. Kawahara, J.
Phys. Soc. Jpn.35, 1537 ~1973!; N. Flytzanis, St. Pnevmati-
kos, and M. Remoissenet, J. Phys. C18, 4603~1985!.


